
Verifying UML/OCL Operation Contracts

Jordi Cabot?, Robert Clarisó, and Daniel Riera

Universitat Oberta de Catalunya (Spain)
{jcabot,rclariso,drierat}@uoc.edu

Abstract. In current model-driven development approaches, software
models are the primary artifacts of the development process. Therefore,
assessment of their correctness is a key issue to ensure the quality of the
final application. Research on model consistency has focused mostly on
the models’ static aspects. Instead, this paper addresses the verification
of their dynamic aspects, expressed as a set of operations defined by
means of pre/postcondition contracts.
This paper presents an automatic method based on Constraint Program-
ming to verify UML models extended with OCL constraints and oper-
ation contracts. In our approach, both static and dynamic aspects are
translated into a Constraint Satisfaction Problem. Then, compliance of
the operations with respect to several correctness properties such as op-
eration executability or determinism are formally verified.

1 Introduction

In recent years, Model Driven Development (MDD) is gaining attention due
to its promise to increase productivity in developing, documenting, and main-
taining software systems. MDD emphasizes the use of models during the whole
development process and thus the correctness of a model becomes a major issue:
model defects will directly become implementation defects in the final software
system due to the application of code-generation techniques. Unfortunately, pop-
ular modeling notations (UML [5] being the most widely used) are not formal
enough to directly prove the correctness of the software models. Therefore, a set
of model-level verification techniques are needed to ensure the quality of soft-
ware model specifications. Each technique can address a variety of correctness
properties and goals depending on which type of models it is analyzing.

In particular, this paper presents a new method for the verification of the
behavioural aspects of software models defined using the design by contract ap-
proach [20], where each operation is defined by means of a contract consisting
of a precondition (set of conditions on the operation input) and a postcondition
(conditions to be satisfied at the end of the operation). In conceptual modeling,
this is also known as the declarative specification of an operation, in contrast
to imperative specifications where the set of updates produced by the operation
on the system state is explicitly defined. Our goal will be detecting defects in
the definition of the operation (e.g. potential inconsistent interactions with in-
tegrity constraints) rather than checking whether an implementation fulfills the
pre/postconditions. This is an extension of our previous work [9, 19] which fo-
cused only on reasoning on integrity constraints without considering operations.
? Work partly supported by the Ministerio de Educación y Ciencia, FEDER under

project TIN208-00444/TIN, Grupo Consolidado and UOC-IN3 research grant.

Fig. 1. Overall picture of the process.

The goal of this paper is twofold. First, we present a set of “reasonable”
correctness criteria that any operation should fulfill. For example, we will try to
check if a precondition is so strong that it cannot be satisfied by any state that
fulfills the integrity constraints (e.g. a precondition “a ≥ 5” when the model
includes the constraint “a ≤ 3” is clearly unsatisfiable). Designers can select
their preferred set of criteria among the predefined set of properties we propose.

Second, we provide a method for verifying these properties on UML/OCL
models. Without loss of generality, we will assume that our input model is a UML
class diagram, annotated with integrity constraints, and pre/postconditions writ-
ten in the Object Constraint Language (OCL) [15]. Our choice is based on the
wide adoption of the UML and it high-level modeling constructs, although many
concepts of this work are applicable to other modeling languages as well.

The verification will be driven by the discovery of examples/counterexamples.
First, the designer selects the criteria to be checked. The model, the integrity
constraints, the correctness criteria and the pre/postconditions will be trans-
formed into a Constraint Satisfaction Problem (CSP) [2, 14] that can be solved
by current Constraint Programming solvers. The solution of the CSP, if there is
one, will be an example or counterexample that proves the criteria being ana-
lyzed. The example is given to the designer as a valuable feedback in the form of
an object diagram (so that he/she can understand it). Our UMLtoCSP tool [19]
will be used to automate the process (see Figure 1).

The rest of the paper is structured as follows. Section 2 introduces OCL
concepts. Section 3 presents our correctness properties and Section 4 their veri-
fication with constraint programming. Tool support is commented in section 5.
Section 6 discusses related work and Section 7 draws some conclusions.

2 Declarative Operations in OCL: Basic Concepts

OCL is a formal high-level language used to describe properties on UML models.
It admits several powerful constructs like quantified iterators (forAll, exists) and
operations over collections of objects (union, select, includes, . . .). The pattern
for specifying a declarative operation op in OCL is the following:

context TypeName::op(p1: Type1, . . . , pN: TypeN): ResultType
pre: Boolean expression (the precondition)
post: Boolean expression (the postcondition)

Operations are always defined in the context of a specific type of the model.
The pre and post clauses are used to express the preconditions and postcon-

context Product inv minStock: self.stock ≥ 5

context GoldCustomer inv salesAmount:
self.sale −>select(s | s.paid).cost −>sum() ≥ 100000

context Customer::newCustomer(name:String, p: Portal): Customer
post: result.oclIsNew() and result.name=name and result.portal=p

context Sale::addSaleLine(p: Product, quantity: Integer): SaleLine
pre: p.stock > 0
post: result.oclIsNew() and result.sale=self and result.product=p and

result.quantity=quantity and p.stock=p.stock@pre-quantity and
self.amount=self.amount@pre + quantity*p.price

context Portal::removeGoldCategory(c: Customer)
pre: c.oclIsTypeOf(GoldCustomer) and c.sale−>isEmpty()
post: not c.oclIsTypeOf(GoldCustomer)

Fig. 2. Running example: class diagram, OCL constraints and operations.

ditions of the operation contract. In the boolean expressions, the implicit pa-
rameter self refers to the instance of the TypeName on which the operation is
applied. Another predefined parameter, result, denotes the return value of the
operation if there is one. The dot notation is used to access the attributes of
an object or to navigate from that object to the associated objects in a related
type. The value of an accessed attribute or role in a postcondition is the value
upon completion of the operation. To refer to the value of that property at the
start of the operation, one has to postfix the property name with the keyword
@pre.

As an example consider the diagram of Fig. 2 aimed at representing a set
of web portals for selling the products of a company to a group of registered
customers, some of them classified as gold customers. The model includes two
textual integrity constraints and three operations. The invariant minStock en-
sures that all products have a stock of at least five units, while salesAmount
imposes that gold customers must have paid a minimum amount of 100000 eu-
ros in sales. Regarding the operations, newCustomer and addSaleLine create a
new customer and a new sale line in a sale, respectively. In OCL, the creation
of an object is indicated with the operation oclIsNew. Operation addSaleLine
also updates the stock of the product and the total amount of the sale. The

operator @pre in p.stock=p.stock@pre - quantity indicates that the stock of the
product has been decreased by quantity units with respect to the previous value.
RemoveGoldCustomer converts a gold customer with no sales into a plain one.

3 List of Correctness Properties

Pre and postconditions of declarative operations must be defined accurately,
taking into account the possible interactions with the integrity constraints. For
instance, preconditions which are too strong may prohibit the execution of an
operation altogether (since none of the valid states of the system can satisfy the
precondition). This section presents a list of properties to determine whether pre
and postconditions are correctly defined.

In the definition of the correctness properties, we will use the following nota-
tion. Given a model M , let S denote a snapshot of M , i.e. a possible instantiation
of the types defined in M . A snapshot S will be called legal, denoted as Inv[S], if
it satisfies all integrity constraints of M , including all textual OCL constraints.

Given a declarative operation op, Preop[o, P, S] denotes that the precondition
of op holds when it is invoked over an object o of an snapshot S using the values
in P as argument values for the list of parameters of op. For the sake of clarity,
we will assume that o is passed as an additional parameter in P , e.g. the first
one, expressing then the preconditions simply as: Preop[P, S]. S and P will be
referred collectively as the input of the operation.

To evaluate the postcondition, we also need to consider the return value and
the snapshot after executing the operation (considering new/deleted objects and
links, updated attribute values, etc.). The final snapshot and the return value
will be referred as the output of the operation. Then, Postop[P, S . S′, R] will
denote that the postcondition of operation op holds when S is the snapshot
before executing the operation, S′ is the snapshot after executing it, P is the
list of parameters and R is the return value.

According to this notation, the list of properties is defined as follows:

– Applicability: An operation op is applicable if the precondition is satisfi-
able, i.e. if there is an input where the precondition evaluates to true.

∃S : ∃P : Inv[S] ∧ Preop[P, S]

– Redundant precondition: The precondition of an operation op is redun-
dant if it is true for any legal input.

(∃S : Inv[S]) ∧ (∀S : ∀P : Inv[S] → Preop[P, S])

– Weak executability: An operation op is weakly executable if the postcondi-
tion is satisfiable, that is, if there is a legal input satisfying the precondition
for which we can find a legal output satisfying the postcondition.

∃S, S′ : ∃P : ∃R : Inv[S] ∧ Inv[S′] ∧ Preop[P, S] ∧ Postop[P, S . S′, R]

– Strong executability: An operation op is strongly executable if, for every
legal input satisfying the precondition, there is a legal output that satisfies
the postcondition.

∀S : ∀P : ∃S′ : ∃R : (Inv[S] ∧ Preop[P, S]) → (Inv[S′] ∧ Postop[P, S .S′, R])

– Correctness preserving: An operation op is correctness preserving if,
given a legal input, each possible output satisfying the postcondition is also
legal.

∀S, S′ : ∀P : ∀R : (Inv[S] ∧ Preop[P, S]) → (Postop[P, S .S′, R] → Inv[S′])

– Immutability: An operation op is immutable if, for some input, it is possible
to execute the operation without modifying the initial snapshot.

∃S : ∃P : ∃R : Inv[S] ∧ Preop[P, S] ∧ Postop[P, S . S,R]

– Determinism: An operation op is non-deterministic if there is a legal input
that can produce two different legal outputs, e.g. different result values or
different final snapshots.

∃S, S′
1, S

′
2 : ∃P : ∃R1, R2 : Inv[S] ∧ Inv[S′

1] ∧ Inv[S′
2] ∧ Preop[P, S] ∧

Postop[P, S . S′
1, R1] ∧ Postop[P, S . S′

2, R2] ∧
((S′

1 6= S′
2) ∨ (R1 6= R2))

Studying these properties in the running example, we have, for instance,
that the precondition of addSaleLine is redundant since it is subsumed by the
integrity constraint minStock. Also, addSaleLine is weakly executable but not
strongly executable: for those states where p.stock-quantity<5 the final state will
violate the invariant minStock. The precondition of removeGoldCategory is not
applicable since constraint salesAmount forces all gold customers to be related to
at least a sale. Finally, newCustomer is strongly executable but not correctness
preserving as it might create a gold customer (instead of a plain one) with no
sales, violating salesAmount.

It is important to remark that, in general, designers define underspecified
postconditions [20]. This means that, given an operation contract, there are
usually several final states that satisfy its postcondition. Therefore, most oper-
ation contracts will be flagged by our analysis as non-deterministic. To improve
the accuracy of the results, designers may want to provide postconditions which
are precise enough to characterize the exact set of desired final states. For ba-
sic postcondition expressions, an educated guess of the designer’s intention can
be inferred by analyzing the initial ambiguous postcondition [6, 8], and thus, it
would be possible to automatically generate a set of additional conditions to
define more precisely the desired final state. This is left as further work.

4 Verifying Operations with Constraint Programming

This section presents a systematic and automatic procedure to verify correctness
properties of operation contracts using the constraint programming paradigm.

Constraint programming [2, 14] is a declarative approach for describing and
solving problems. A problem in constraint programming, called constraint sat-
isfaction problem (CSP), is defined as a finite set of variables, domains (one
per variable) and constraints over the variables. A solution to a CSP is an as-
signment of values to variables that satisfies all constraints, with each value
within the domain of the variable. Constraint programming solvers use efficient
backtracking-based techniques to automatically explore the search space and
find solutions to the CSP. To ensure termination, the search space must be fi-
nite, thus, all variable domains must be finite.

The key idea of our approach is to translate the model, together with its
integrity constraints, the desired correctness property and the operation to verify,
into a CSP such that by checking whether the generated CSP has a solution
we can determine if the operation satisfies the property. Both the translation
procedure and the search of a solution for the CSP (performed using existing
CSP solvers) are completely automatic and, therefore, all the verification process
is transparent to the designer.

In short, with our translation procedure, the set of variables in the generated
CSP characterize a possible snapshot of the model, i.e. the variable values rep-
resent the objects of the snapshot, their attributes values, their relations, etc.
Its constraints ensure that the variable values (i.e. the snapshot) are consistent
with the implicit structural UML constraints (e.g. all objects in a subtype must
be also instance of its supertype), graphical constraints (e.g. multiplicities) and
textual OCL constraints. Pre and postconditions of operations and correctness
properties are translated as additional constraints.

Given this set of variables, domains and constraints, the final CSP is orga-
nized as a sequence of subproblems to be solved by the constraint solver in order
to find a solution for the CSP, and thus, prove the desired correctness property.
The exact combination of these subproblems in the CSP depends on the chosen
property. For properties regarding the operation precondition, the resolution of
the CSP first searches for a legal snapshot which satisfies the operation precon-
dition (this, for instance, proves the applicability of the operation). If no solution
is found, the solver concludes that the property is not satisfied. For properties
involving postconditions, once we have a legal instance that satisfies the pre-
condition, the solver must search for a second legal snapshot that satisfies the
postcondition (see Figure 3). As we will see, for some properties we will search
for solutions that falsify the pre/postcondition expressions instead.

The following subsections explain the encoding of the UML class diagram,
the OCL constraints and the operations’ pre and postconditions in the CSP
and how they are combined, depending on the selected correctness property, to
generate the final CSP that will be used to prove the property. The first two
steps are a short summary of our previous work [9].

Without loss of generality, in our presentation we use the Prolog-based CSP
formalism used by the constraint solver ECLiPSe [2]. Due to space limitations,
only some translation excerpts can be shown. The full translation for our running
example can be found in [19].

Fig. 3. Analysis of the weak executabiliy property.

4.1 Translation of the UML class diagram

A class diagram consists of a set of classes, associations and generalisation sets.
Each element must be translated into a corresponding set of variables, domains
and constraints in the CSP. Appropriate domains for each variable can be pro-
vided by the designer as part of the translation process or default values can be
used.

For each class C, our translation creates a SizeC variable to record the num-
ber of instances of C in the snapshot, a list variable InstancesC to hold the C
instances, where each element in the list is of type struct(C) = (oid, f1, . . . , fn),
where: oid represents the explicit object identifier for each object and each field
fi corresponds to an attribute of C.

Similarly, for each association As the translation creates a SizeAS variable to
record the number of links (i.e. association instances) in As and a list variable
InstancesAs to store the links, where each element is of type struct(As) =
(p1, . . . , pn), where p1 . . . pn are the role names of the participant classes. Each
concrete participant is identified by its oid.

Generalizations do not imply the definition of new variables but of new con-
straints among the classes involved in the generalisation set. Additional con-
straints to control the cardinality constraints or the uniqueness of oid values,
among others, are also defined in the CSP.

4.2 Translation of OCL invariants

Each OCL integrity constraint (invariants in the UML terminology) results in
a new constraint in the CSP that restricts the possible assignment of values to
the CSP variables, i.e. it limits the possible set of legal snapshots of the model.

OCL invariants are boolean OCL expressions defined in the context of a
specific type of the model and that must be satisfied by all instances of that
type, in other words, the invariant is universally quantified over the objects of
the type. Therefore, the translation must ensure that the boolean condition of
the invariant (its body) is satisfied by each individual object, i.e. by each possible
value of the self variable. For instance, the invariant minStock (context Product
inv minStock: self.stock ≥ 5) would be translated1 into the rule depicted in

1 To favour the readability of the rules some technical details are omitted.

invariantMinStock(Snapshot) : −
% Get the list of Objects in Snapshot of type Product

getObjects(Snapshot, ‘‘Product’’, Objects),

(foreach(Object, Objects) do % Iterate over all objects

% Evaluate the invariant expression using this object as ‘‘self’’

evalRootMinStock(Snapshot, [Object], Result),

% The invariant must evaluate to true

Result #=1).

evalRootMinStock(Snapshot, Vars, Result) :-

attribStock(Snapshot, Vars, X), % X = attrib value

const5(Snapshot, Vars, Y), % Y = constant

#>=(X, Y, Result). % Result = X >= Y

const5(, , Result):- Result #= 5.

Fig. 4. Translation of the invariant minStock (top) and some subexpressions (bottom).

Figure 4. This rule fails when the given snapshot contains a product with a
too low stock. An auxiliary rule, evalRootMinStock, is responsible for checking
this condition body on each object. The failure of the rule determines that the
snapshot is not legal, and thus, forces the solver to backtrack and try a different
combination of variable assignments.

The translation of the body conditions proceeds as follows. The OCL body
expression is analyzed using a metamodel-based representation of the expres-
sion where each element (operator, variable, constant, method call, . . .) is au-
tomatically defined as instance of the appropriate class in the OCL metamodel.
Intuitively, an instance of the OCL metamodel for an OCL expression is the
equivalent of an annotated syntax tree for the expression. Internal nodes corre-
spond to operators, while the leaves of the tree are constants and variables. The
information annotated on each node depends on its type as, for instance, the
specific OCL operator, the value of the constant or the identifier of a variable.

The transformation of an OCL expression tree into an ECLiPSe CSP is per-
formed by traversing the tree in postorder and translating each visited node into
one Prolog rule with an unique name. For instance, in the invariant minStock,
evalRootMinStock refers to the rule created for the topmost node of the minStock
invariant body expression. Therefore, the transformation can be fully character-
ized by describing the Prolog rule that corresponds to each type of node in the
OCL metamodel.

Prolog rules for OCL expressions follow the pattern:

rule-name(Snapshot, Variables, Result) :- rule-body.

where rule-name is the unique name of the rule, Snapshot and Variables
are the input arguments and Result stores the output of the expression. Intu-
itively, Snapshot is the snapshot of the model where the expression is evaluated.

Variables is the list of variables visible in the scope of the expression, e.g. the
self variable and variables introduced by previous quantifiers due to iterator
expressions like forAll. In the rule-body we specify the sequence of predicates
that describe the relationship between the inputs and the output. A typical body
evaluates the subexpressions (using their Prolog rule) and computes the output
from those intermediate results.

As an example, let us consider the body of the invariant minStock (self.stock
≥ 5), which contains four subexpressions: a variable (self), an attribute access
(stock), a constant (5) and a relational operator (≥). The rules for the last two
expressions are depicted in Figure 4 (see [9, 19] for more examples). For more
complex OCL operators and iterator expressions we have already implemented a
parametrized library of Prolog rules (available in [19]) that maps the semantics
of each predefined OCL construct.

4.3 Translation of OCL operation contracts

Operations introduce new challenges in this translation: the list of parameters
of the operation, the result value, and the complexity of studying two snapshots
at once when analyzing postconditions.

Translation of preconditions The boolean OCL expression of a precondi-
tion is basically translated following the same procedure explained above for
the translation of invariant bodies. However, there are two differences regarding
how and when the precondition expression is evaluated: the parameters and the
quantification.

In the analysis of a precondition, it is necessary to consider the possible
value of the operation parameters. For parameters of a basic type (integer, float,
boolean, string) designers must define their possible finite domain, for instance
defining a lower and upper bound. Parameters whose type is one of the classes
of the model (as the self parameter) can only refer to an object existing in
the snapshot, so their value is already constrained by the valid instances of the
snapshot where the operation is invoked. When evaluating a precondition, pa-
rameters become additional variables of the CSP, and their values are discovered
by the solver as a part of the search for a solution to the CSP. For instance, when
checking the applicability of an operation, the solver will automatically try sev-
eral possible combinations of parameter values until it finds a combination (if
any) that satisfies the Prolog rule generated for the precondition.

Contrary to invariants, properties on preconditions only require to find a
single combination of a valid state and a possible assignment for the operation
parameters that satisfy the precondition. Therefore, preconditions will be trans-
lated into a rule which simply evaluates the precondition body, invoking the rule
for the topmost operator. To ensure that the rules for the precondition body
have access to all parameter values during the rule evaluation, the list of visible
variables for these rules (second argument of the Prolog rule) is initialized with
the list of parameter values. In this way, accessing a parameter within the ex-
pression is equivalent to accessing any other variable: the rule only needs to be

aware of the position of each parameter in the variables list. As an example, the
precondition rule for addSaleLine will be defined as follows:

preconditionAddSaleLine(Snapshot, Parameters, Result) : −
% Result = truth value of evaluating the precondition

evalRootExpr(Snapshot, Parameters, Result).

where evalRootExpr represents the rule for the root node of the precondition
expression. The output Result value, reporting whether the given input (i.e. the
self object plus the other parameters) satisfies the precondition, will be used
later on to determine the satisfaction of correctness properties for the operation.

Translation of postconditions Two new factors in the translation of post-
conditions are the return value and the relationship between the two snapshots
representing the initial and final states.

In our translation, the return value will simply become another variable in the
list of visible variables, just like self or the other parameters in the precondition.

Relationships between the initial and the final state are expressed by means
of the oclIsNew and, specially, the @pre OCL operators. OclIsNew highlights
that an object should exist in the final state but not in the initial one; and
@pre is used to retrieve the value of a subexpression in the initial state. Thus,
the Prolog implementation of these two operators needs to receive an additional
argument: the snapshot for the initial state. To avoid changing the general rule
pattern due to this extra argument, this initial state is stored in the global
variable initialstate. This variable will be conveniently accessed within the
subrules for these two operators. Translation of all other OCL operators in the
postcondition expression is not changed from previous translations steps. They
are just evaluated on the particular snapshot given as argument to their Prolog
rule, it does not matter if it represents the initial or the final state.

To sum up, the definition of the rule for the postcondition of the operation
addSaleLine is shown in Figure 5. The initialstate variable will then be used
in the rules evaluating oclIsNew and @pre nodes appearing in postcondition
expressions. We provide the rule for oclIsNew as an example in Figure 6. It
determines if the object with the Oid value given as an argument is an object
that did not exist before executing the operation.

4.4 Translation of correctness properties

As a last step, each correctness property (or its negation) is translated as a new
CSP constraint restricting the result values returned by the pre and postcon-
dition rules such that finding a solution to the CSP with this new constraint
suffices to prove the property.

Whether to use the property or its negation depends on the quantification
used in the property formalization, existential or universal (see Section 3). Ex-
istentially quantified properties can be proved by finding an example, i.e. a case

:- local reference(initialstate).

postconditionAddSaleLine(InitialState, FinalState,

Parameters, RetValue, Result) : −
% Add the return value and parameters to the list of visible vars

append([RetValue], Parameters, Variables),

% Store the initial state, needed in oclIsNew and @pre nodes

setval(initialstate, InitialState),

% Result = truth value of evaluating the postcondition

evalRootExpr(FinalState, Variables, Result).

Fig. 5. Translation of the OCL postcondition of operation addSaleLine.

ocl isNew(FinalState, Oid, TypeName, Result) :-

% Recover the initial state from the global variable

getval(initialstate, InitState),

% Get the list of objects before and after the operation

getObjects(InitState, TypeName, ObjectsBefore),

getObjects(FinalState, TypeName, ObjectsAfter),

% Check if Oid exists before/after the operation

existsObjectWithOid(ObjectsBefore, Oid, ExistsBefore),

existsObjectWithOid(ObjectsAfter, Oid, ExistsAfter),

% Result = ExistsAfter and not ExistsBefore

and(ExistsAfter, neg ExistsBefore, Result).

Fig. 6. Translation of the OCL operator oclIsNew.

where the property is satisfied. For example, applicability can be proved by find-
ing a legal input that satisfies the precondition. Universally quantified properties
can be disproved by finding a counterexample. For instance, redundancy can be
disproved by finding a legal snapshot that does not satisfy the precondition
Similarly, the lack of (counter)examples can be used to (dis)prove the property.

The selected property also influences how the final CSP is organized as a com-
bination of the rule excerpts generated during the previuos translation steps. For
properties on preconditions, postcondition rules are not included. For properties
on postconditions, the CSP is split up into two subproblems (see Figure 3). The
first one (findInitialState) tries to find a legal snapshot that satisfies the pre-
condition rule. This initial snapshot is then given as an argument to the second
subproblem (findFinalState), in charge of finding a second legal snapshot satis-
fying (or not) the postcondition to prove the property. As an example, Figure 7
sketches the final CSP to determine whether addSaleLine is weakly executable.
Other properties imply adding new constraints/subproblems to the CSP. For
instance, immutability requires a new constraint imposing the equality between
the initial and final states.

weakExecutabilityAddSaleLine(Example) :-

Example = [InitState, FinalState, Parameters, RetValue],

findInitialState(InitState, Parameters),

findFinalState(InitState, FinalState, Parameters, RetValue).

findInitialState(InitState, Parameters) :-

% Definition of variables, domains, graphical integrity constraints

% Textual integrity constraints

invariantMinStock(InitState), invariantSalesAmount(InitState),

% Precondition

preconditionAddSaleLine(InitState, Parameters, ResultOfPre),

ResultOfPre #= 1, % Weak executability

% Now find a solution satisfying all these constraints

labeling([InitState, Parameters]).

findFinalState(InitState, FinalState, Parameters, RetValue) :-

% Definition of variables, domains, graphical integrity constraints

% Textual integrity constraints

invariantMinStock(FinalState), invariantSalesAmount(FinalState),

% Postcondition

postconditionAddSaleLine(InitState, FinalState, Parameters,

RetValue, ResultOfPost),

ResultOfPost #= 1, % Weak executability

% Now find a solution satisfying all these constraints

labeling([FinalState, RetValue]).

Fig. 7. CSP generated for checking weak satisfiability of addSaleLine. The labeling
operator is a possible backtracking implementation offered by the constraint solver
that attempts to assign values to the given list of input variables. If the assignment
does not satisfy all the stated CSP constraints preceding the labeling, a new assignment
is tried until the solver finds a solution or determines that no solution exists.

5 Tool Support

The verification method presented in this paper is being implemented as an
extension of our UMLtoCSP tool [19]. Given an UML/OCL model and a cor-
rectness property P, the tool determines whether the model satisfies P and
shows graphically example snapshots that prove/disprove it. For instance, Fig.
8 shows the counterexample provided by UMLtoCSP when analyzing whether
addSaleLine is correctness preserving: there is a legal input (the snapshot on
the left satisfies the invariants and precondition) with an illegal output (the
snapshot on the right satisfies the postcondition but not the invariant minStock
as there are only 4 items of Product1). The translation from the model to the
CSP, the search of the counterexample snapshots and the graphical depiction are
performed automatically by UMLtoCSP. See [19] for more details and examples.

Parameters: [Self=Sale1, Quantity=1, P=Product1], Return value = SaleLine2

Fig. 8. Counterexample proving that addSaleLine is not correctness preserving: initial
state (left), final state (right), parameter values and return value (top). The final state
violate the invariant minStock.

6 Related Work

Typically, approaches devoted to the verification of UML/OCL models (as [1,4,
7, 10, 13, 16, 17] or our own approach among others) transform the diagram into
a formalism where efficient solvers or theorem provers are available. However,
there are complexity and decidability issues to be considered. Reasoning on UML
class diagrams is EXPTIME-complete [3], and, when general OCL constraints
and/or operations are allowed, it becomes undecidable.

By choosing a particular formalism, each method commits to a different
trade-off (expressivity vs termination vs automation vs completeness) for the
verification process. In what follows we compare the features of methods sup-
porting the verification of declarative operations, a small subset of the ones listed
above, with this paper.

HOL-OCL [7] embeds OCL into the higher-order logic (HOL) instance of the
interactive theorem prover Isabelle. It supports the full OCL expressivity but it
requires user-interaction to complete proofs, and thus, it is not automatic.

The UMLtoAlloy tool [1] proposes an automatic translation of UML/OCL
to Alloy [12]. Alloy is a mature tool for the automated analysis of software spec-
ifications that works by transforming the entire problem, including operation
specifications, into an instance of SAT (satisfiability of a boolean formula in
conjunctive normal form). However, the translation in [1] is only partial and
Alloy itself presents some limitations, such as the need explicitly identify which
model elements are modified by an operation or limited support for arithmetic
operations. Thus, the usefulness of Alloy for verifying high-level UML/OCL spec-
ifications is somewhat limited.

Recent results [11] have extended the description logics formalism (in short, a
decidable subset of first-order logic) to define and reason on operation contracts.

However, these approaches need to restrict the constructs that may appear in
the model to keep the reasoning decidable. Thus, most OCL operations cannot
be translated into this formalism.

Previous approaches based on constraint programming like [10, 13] did not
admit any kind of OCL expressions. Our previous work in [9,19] was limited to
OCL invariants and did not support the analysis of declarative operations.

In contrast, the new approach presented in this paper is fully automatic,
expressive and decidable. We believe that these three characteristics are key fea-
tures in order to extend the adoption of formal methods among the modeling
community. As a trade-off, our method is not complete: results are only conclu-
sive if a solution to the CSP (the example/counterexample) is found. However,
the absence of solutions within a finite search space cannot be used as a proof:
a solution may still exist outside that search space.

Although this may limit the applicability of our method, we believe an effi-
cient decidable procedure provides more useful information than a semidecidable
procedure, even if the answer is not conclusive. Moreover, when checking the cor-
rectness of a model, most errors can be found even if we bound the search space
of the verification process. This “small scope” hypothesis, i.e. that it is possible
to prove interesting properties about models by focusing only on small instanti-
ations, is shared by other bounded methods [12]. Moreover, if desired, it is still
possible to use our method on infinite domains [2] resulting in a complete but
semidecidable method (for properties that can be satisfied by finite instances).

Our approach can be complemented with other verification approaches ad-
dressing other kinds of behavioural UML diagrams (as state machines [18]) in
order to provide more global results.

7 Conclusions and Further Work

We have presented a new automatic method for the formal verification of declar-
ative operations in UML/OCL models. We believe our approach can be used to
leverage current UML/OCL verification approaches, more focused on the verifi-
cation of the static parts of the model.

Regarding efficiency, the search space for examples/counterexamples depends
on the size of the model, so scalability quickly becomes an issue even when using
sofisticated constraint solvers. As a further work, we plan to improve the search
process in several ways. First, we would like to refine our translation process by
considering implicit semantics in the initial contract specification (as the nothing
else changes assumption). Also, we plan to work on the automatic inference
of variable domains, discovered by a static analysis of the OCL constraints to
tune the solving process. Furthermore, we are considering the abstraction of
information from the model which is not relevant to the operation being verified
and the relevant subset of integrity constraints.

We also plan to explore the verification of dynamic aspects of the model when
specified in combination with other constructs or UML diagrams like sequence
diagrams or state machines and the benefits of porting these techniques to other
design by contract languages as JML, Eiffel or Spec#.

References

1. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A challenging
model transformation. In MODELS’07, volume 4735 of LNCS, pages 436–450,
2007.

2. K. R. Apt and M. G. Wallace. Constraint Logic Programming using ECLiPSe.
Cambridge University Press, Cambridge, UK, 2007.

3. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Reasoning over extended ER models. In ER’07, volume 4801 of LNCS, pages
277–292, 2007.

4. D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168:70–118, 2005.

5. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

6. A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure
specifications. IEEE Trans. Software Eng., 21(10):785–798, 1995.

7. A. D. Brucker and B. Wolff. The HOL-OCL book. Technical Report 525, ETH
Zurich, 2006.

8. J. Cabot. From declarative to imperative UML/OCL operation specifications. In
ER’07, volume 4801 of LNCS, pages 198–213, 2007.

9. J. Cabot, R. Clarisó, and D. Riera. Verification of UML/OCL class diagrams using
constraint programming. In IEEE International Conference on Software Testing
Verification and Validation Workshop, ICSTW’08, pages 73–80, 2008.

10. M. Cadoli, D. Calvanese, G. D. Giacomo, and T. Mancini. Finite satisfiability
of UML class diagrams by Constraint Programming. In DL’2004, volume 104 of
CEUR Workshop Proceedings. CEUR-WS.org, 2004.

11. C. Drescher and M. Thielscher. Integrating action calculi and description logics. In
J. Hertzberg, M. Beetz, and R. Englert, editors, KI, volume 4667 of LNCS, pages
68–83. Springer, 2007.

12. D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology, 11(2):256–290, 2002.

13. H. Malgouyres and G. Motet. A UML model consistency verification approach
based on meta-modeling formalization. In SAC’2006, pages 1804–1809. ACM Press,
2006.

14. K. Marriott and P. J. Stuckey. Programming with Constraints: An Introduction.
MIT Press, Cambridge, Massachussetts, 1998.

15. Object Management Group. UML 2.0 OCL Specification, 2003.
16. A. Queralt and E. Teniente. Reasoning on UML class diagrams with OCL con-

straints. In ER’06, volume 4215 of LNCS, pages 497–512, 2006.
17. R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using description logic

to maintain consistency between UML models. In UML’03, volume 2863 of LNCS,
pages 326–340. Springer, 2003.

18. E. Turner, H. Treharne, S. Schneider, and N. Evans. Automatic generation of CSP
B skeletons from xuml models. In ICTAC, volume 5160 of LNCS, pages 364–379,
2008.

19. UMLtoCSP. A tool for the formal verification of UML/OCL models based on
Constraint Programming. http://gres.uoc.edu/UMLtoCSP.

20. R. Wieringa. A survey of structured and object-oriented software specification
methods and techniques. ACM Comput. Surv., 30(4):459–527, 1998.

