
UMLtoCSP: A Tool for the Formal Verification of UML/OCL
Models Using Constraint Programming

Jordi Cabot
Estudis d’Informàtica,

Multimèdia i Telecomunicació
Universitat Oberta de

Catalunya
08018 Barcelona, Spain

jcabot@uoc.edu

Robert Clarisó
Estudis d’Informàtica,

Multimèdia i Telecomunicació
Universitat Oberta de

Catalunya
08018 Barcelona, Spain
rclariso@uoc.edu

Daniel Riera
Estudis d’Informàtica,

Multimèdia i Telecomunicació
Universitat Oberta de

Catalunya
08018 Barcelona, Spain

drierat@uoc.edu

ABSTRACT
We present UMLtoCSP, a tool for the formal verification
of UML/OCL models. Given a UML class diagram anno-
tated with OCL constraints, UMLtoCSP is able to auto-
matically check several correctness properties, such as the
strong and weak satisfiability of the model or the lack of
redundant constraints. The tool uses Constraint Logic Pro-
gramming as the underlying formalism and the constraint
solver ECLiPSe as the verification engine.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification; I.2.8 [Artificial Intelligence]: Problem Sol-
ving, Control Methods and Search

General Terms
Verification

Keywords
UML, OCL, MDD, Model Verification, Constraint Program-
ming

1. INTRODUCTION
The growing adoption of Model-Driven Development (MDD)

methods, where models are the primary artifact of the de-
velopment process, is shifting the focus of existing sofware
engineering methods from code to models. In this context,
the correctness of such models plays an important role in
the quality of the final software system.

Unfortunately, there are currently few tools that support
the verification of software models and, more precisely, the
analysis of UML class diagrams annotated with OCL cons-
traints (possibly the diagram most frequently used in auto-
mated code generation). The main reason is that the formal
verification of a model is an undecidable problem. Therefore,
current tools are either not fully automated or they work on
a restricted subset of the UML and OCL languages.

Our UMLtoCSP tool [7] uses a different approach (bounded
verification) to achieve an automatic and decidable verifica-

Copyright is held by the author/owner(s).
ASE’07, November 4–9, 2007, Atlanta, Georgia, USA.
ACM 978-1-59593-882-4/07/0011.

tion. First, the initial model is translated into a Constraint
Satisfaction Problem (CSP). More precisely, for each ele-
ment of the class diagram we define a set of variables, do-
mains and constraints that define a CSP. The correctness
properties to be verified are translated as additional cons-
traints of the CSP. Then, the tool relies on the constraint
solver ECLiPSe [1] to determine whether the CSP has a so-
lution or not.

A solution is an assignment of values from the domain to
the set of variables in such that way that all constraints are
satisfied. Each each solution defines a valid instance of the
model. The existence of at least one solution proves that
the model satisfies the correctness property.

This approach presents several benefits with respect to
other related tools. First of all, it is fully automated, unlike
theorem proving methods that may require user assistance
(e.g. HOL-OCL [2]). The approach does not impose any un-
derlying restriction on the expressiveness of the UML/OCL
models. In this sense, it supports OCL constraints, un-
like previous methods based on Constraint Programming [3].
Furthermore, it does not require the user to annotate, mod-
ify or enrich the original UML/OCL model in any way (un-
like the validation tool USE [5], where the designer must
write the ASSL code that creates valid snapshots). Finally,
besides determining the correctness of the model, the tool
is able to explain this result by means of computing and
showing to the designer a valid instance that certifies it.

2. FUNCTIONALITY
The tool can verify several typical correctness properties

on UML/OCL models:

Strong satisfiability: the model should have a finite in-
stance where the population of each class and associa-
tion is not empty.

Weak satisfiability: the model should have a finite in-
stance where at least one class has a non-empty po-
pulation.

Liveliness of a class X: The model should have a finite
instance where the population of X is not empty.

Lack of constraint subsumption: Given two constraints
c1 and c2, there should be a finite instance where c1

is satisfied and c2 is not satisfied. Otherwise, c1 sub-
sumes c2 and therefore c2 could be removed.



Figure 1: Graphical User Interface of UMLtoCSP.

Lack of constraint redundancy: Given two constraints
c1 and c2, there should be a finite instance of the model
that satisfies c1 or c2, but not both.

3. TOOL USAGE
UMLtoCSP works as a stand-alone application, either from

the command line or from a graphical user interface (see
Fig. 1). In both cases, the execution flow is depicted in
Fig. 2: the user provides as an input an XMI file with the
UML class diagram, a text file with the OCL constraints and
the list of properties to be verified. Optionally, before star-
ting the analysis, the user can tune the limits of the search
space if he/she does not want to use the default values.

Once all these inputs have been provided, the translation
of the model into a CSP and the CSP-based verification of
the property are fully automatic and transparent to the user.
The tool reports whether the property holds or not and, if
it does, it depicts an instance of the model certifying it.

Internally, UMLtoCSP uses several existing libraries and
tools: MDR is used to parse the XMI files, Dresden OCL
toolkit [4] to process the OCL constraints, the constraint
solver ECLiPSe to find the solutions of the CSP and the graph
visualization package Graphviz [6] to display instances of the
model. The tool itself is implemented in two components:
a Java library (providing glue code, the GUI and the trans-
lation into CSP) and an ECLiPSe library written in Prolog
(providing utility code for UML and OCL such as a Prolog
implementation of the OCL Standard Library).

4. CONCLUSIONS
UMLtoCSP can verify quality properties of UML class

diagrams with OCL constraints. The method is fully auto-
matic and provides useful feedback to designers with a low
overhead. As future work, we plan to extend the degree
of OCL support (e.g. operations on strings), add support
for other correctness properties (e.g. applicability of ope-
rations) and integrate UMLtoCSP as a plug-in inside other
CASE tools.

5. ACKNOWLEDGMENTS
This work is partially funded by a research grant by the

Internet Interdisciplany Institute (IN3) at UOC. The au-

Figure 2: Architecture of UMLtoCSP.

thors would like to thank Patricia de la Fuente and Chris-
tian Pérez-Llamas for their work on the implementation of
the tool.

6. REFERENCES
[1] K. R. Apt and M. G. Wallace. Constraint Logic

Programming using ECLiPSe. Cambridge University
Press, Cambridge, UK, 2007. .

[2] A. D. Brucker and B. Wolff. The HOL-OCL book.
Technical Report 525, ETH Zurich, 2006. .

[3] M. Cadoli, D. Calvanese, G. D. Giacomo, and
T. Mancini. Finite satisfiability of UML class diagrams
by Constraint Programming. In Proc. of the 2004
International Workshop on Description Logics
(DL’2004), volume 104 of CEUR Workshop
Proceedings. CEUR-WS.org, 2004.

[4] B. Demuth. The Dresden OCL toolkit and its role in
Information Systems development. In Proc. of the 13th
International Conference on Information Systems
Development (ISD’2004), Vilnius, Lithuania, 2004.

[5] M. Gogolla, J. Bohling, and M. Richters. Validating
UML and OCL models in USE by automatic snapshot
generation. Journal on Software and System Modeling,
4(4):386–398, 2005. .

[6] Graphviz. Graph visualization software.
http://www.graphviz.org.

[7] UMLtoCSP. A tool for the formal verification of
UML/OCL models based on Constraint Programming.
http://gres.uoc.edu/UMLtoCSP.


