
UML/OCL Verification In Practice

Jordi Cabot and Robert Clarisó

Universitat Oberta de Catalunya
{jcabot, rclariso}@uoc.edu

Abstract. In the MDD approaches, models become the primary artifact
of the development process and the basis for code generation. Identifying
defects early, at the model-level, can help to reduce development costs
and improve software quality. There is an emerging need for verifica-
tion techniques usable in practice, i.e. able to find and notify defects in
real-life models without requiring a strong verification background or ex-
tensive model annotations. Some promising approaches revolve around
the satisfiability property of a model, i.e. deciding whether it is possible
to create a well-formed instantiation of the model. We will discuss ex-
isting solutions to this problem in the UML/OCL context. Our claim is
that this problem has not yet been satisfactorily addressed.

1 Introduction

Model-driven development (MDD) advocates for the use of models as develop-
ment artifacts. In this context, code is no longer written from scratch but syn-
thesized from models (semi-)automatically. Therefore, any defect in the model
will propagate into defects in the code. In MDD model correctness becomes a
key factor in the quality of the final software product.

Although the problem of ensuring software quality has attracted much atten-
tion and research, it is still considered to be a Grand Challenge [1]. In this sense,
this paper argues that this grand challenge must be adapted and extended to
cover the verification of modeling notations commonly used in MDD approaches.
In this field, it is essential to provide a set of tools and methods that helps in
the detection of defects at the model-level and smoothly integrates in existing
MDD-based tool-chains without an excessive overhead. Characteristics of exist-
ing tools, such as required designer interaction or manual model annotations
seriously impair its usability in practice.

We will discuss existing approaches and their limitations to motivate that this
problem is still unsolved and remains an important challenge in MDE. Through-
out the paper, we will focus on the UML as an example of a MDD modeling
language. However the contents of the paper also apply to all kinds of domain-
specific modeling languages (DSMLs). Some of the problems identified herein
already arise when just considering the graphical elements of the models. How-
ever, complexity increases when designers use textual languages (e.g. OCL) to
improve the precision/formalization of the models. Note that all existing model-
level verification approaches proceed by translating the models to a more formal



language (e.g. Alloy). Therefore, characteristics (and limitations) of correctness
techniques for UML/OCL models largely depend on the properties of available
verification techniques for those underlying formal languages.

2 A definition of “correctness”

One of the first problems when discussing correctness at the model-level is the
large number of existing correctness notions, according to many different criteria:
static vs dynamic, inter-diagram vs intra-diagram, . . .

A first degree of correctness can be that of consistency and well-formedness,
checking that all uses of a model element (possibly in different diagrams) are
consistent with its declaration and that the model as a whole can be expressed
as a correct instantiation of its meta-model.

Even though this analysis provides an initial level of defect detection, it does
not take into account the semantic correctness of the model being defined. By
semantics, we consider the set of required conditions (i.e. integrity constraints)
that should be satisfied by any correct instance of the model. These conditions
may be implicit in the model notation (like the multiplicity constraints in UML
associations) or explicitly defined using a constraint language like OCL. These
semantics problems may affect either the static (structural) or dynamic (behav-
ioral) view of the system. Examples of possible errors are the non-executability
of pre and postconditions in an operation or the presence of contradictory in-
variants or association multiplicities.

Different modeling notations and constraint languages have varying degrees
of expressivity. Therefore, each notation creates a different challenge in terms
of decidability and efficiency, and suggests a different set of analysis techniques.
Due to space limitations, we will focus our discussion on the study of UML
static models. In UML, static models may be expressed as class diagrams com-
plemented with a set of OCL constraints.

A fundamental semantic correctness notion in static models is that of model
satisfiability. (Strong) Satisfiability consists in deciding whether it is possible to
create a non-empty and finite instantiation of the model in such a way that all
integrity constraints are satisfied. Clearly, an unsatisfiable model is useless since
every time users try to create a new object, e.g. instantiating one class of the
model, at least one of the integrity constraints will become violated.

The importance of satisfiability comes from the ability to define many other
correctness properties, such as liveliness, constraint redundancy, subsumption
and so forth, in terms of the satisfiability problem. For example, a designer can
check if an integrity constraint C is redundant by formulating a satisfiability
problem where ¬C replaces C in the model. If that model is satisfiable, it means
it is possible to satisfy the remaining integrity constraints while violating C, so
C is not a redundant constraint.

In the next sections we describe current approaches for UML/OCL model
satisfiability and possible further research directions to cope with this challenging
problem as a basis for identifying semantic defects in UML/OCL models.



3 State of the Art

In order to succeed in a MDD context, we believe any method for model satisfi-
ability should fulfill the following list of requirements:

– Understand the input notation used by the designer (e.g. UML/OCL), not a
formal notation nor a subset of that notation. If an internal formal notation
is used, it should be transparent to the designer.

– Analyze the designer’s model as is, without requiring any type of manual
annotation.

– Perform the analysis automatically and without requiring user interaction.
– Provide results in a format meaningful to the designer.
– Be efficient and scale up to support large real-life examples.
– Integrate seamlessly into the designer tool chain.

Existing solutions lack of one or more of the previous qualities, and that
might justify the lack of adoption of model-level verification tools in current
MDD projects. In what follows, we describe the weaknesses of existing methods
in terms of the main challenges they have to face when trying to satisfy the
previous properties.

1. Decidability: The complexity of satisfiability analysis mainly depends on
the expressiveness of the logic used to define the model and its constraints.
Allowing a notation such as OCL makes the problem undecidable. Three
different strategies are used to confront this undecidability:
– Relaxing automation: Methods based on theorem proving might require

user assistance during proofs, e.g. HOL-OCL [2].
– Constraining the logic: Some methods work on a restricted subset of OCL

(e.g. [3]) and some others do not support OCL at all (e.g. [4]). There is
a trade-off between expressiveness (e.g. “are numerical constraints sup-
ported?”) and complexity.

– Performing bounded verification: If a finite bound is defined, it is then
possible to check a property for all possible instances up to that maxi-
mum size, e.g. [5, 6]. This type of analysis can be used to prove the sat-
isfiability of a model, but the lack of counterexamples within a bounded
search space cannot be used to prove its unsatisfiability.

2. Efficiency: Reasoning on UML class diagrams is EXP-complete [7] even
without OCL constraints and thus, current tools do not scale-up well which
makes efficiency a concern for most non-trivial models.

3. Usability: Verification tools are often disappointing from the point of view
of a designer. One of the main reasons is that tools do not directly manipulate
the UML/OCL model but first translate it into a formal language (Alloy [6],
CP [5], HOL [2], DL [8]) where the verification process takes place. Therefore,
a good knowledge of this underlying language may be required to operate
effectively, e.g. while selecting adequate parameters, tuning the model for the
analysis or interacting with the tool. For this same reason, the interpretation
of the results of the analysis might be complex and should be expressed in
terms of the original model.



4. Expressiveness: The richness of the modeling languages (specially of the
UML and OCL standards) creates a challenge for tool developers, who
must support a wide variety of modeling constructs. Furthermore, the varied
ecosystems of design tools, development tools and IDEs creates additional
difficulties in terms of integration and interoperability.

4 Research Agenda: Promising Research Directions

The aim of this section is to sketch possible future research directions we believe
may help in overcoming the previous limitations.

– Automatic selection of the most appropriate verification approach
for a specific model. Each approach presents a different trade-off regard-
ing the verification process. Depending on the model one approach may be
more suited than others. For instance, for UML models without integrity
constraints (a decidable problem) it may be better to use complete ap-
proaches (as those based on Description Logics) instead of approaches based
on bounded verification.

– Model partition to improve performance. In most cases, the verifica-
tion of a model m can be defined in terms of the verification of the submodels
mi, . . . ,mn. Techniques for slicing the model in a subset of independent sub-
models (with the subsets to be computed depending on the property to be
verified) will definitely help in improving the efficiency of the process due to
its exponential nature.

– Establish public community benchmarks to compare different tools
and approaches. Benchmarks provide an excellent resource to measure
progress and the significance of a contribution. The existence of widely ac-
cepted benchmarks for model verification can foster progress and allow ex-
isting approaches to mature and exchange ideas.

– Search space reduction for bounded methods. Bounded methods re-
quire a finite search space. A smaller search space improves the efficiency
but impairs the completeness of the verification. A preliminary analysis of
the model could provide some insight on the best bounds of the search space
as a trade-off between the two properties.

– Apply SAT Modulo Theories to model satisfiability. SAT Modulo
Theories (SMT) is a promising technique for checking the satisfiability of a
complex formula which combines recent improvements in SAT tools with the
power of a custom solver specialised in a given logic [9]. In the case of model
satisfiability, the challenge is identifying a subset of the modeling language
which is sufficiently expressive yet allows efficient decision procedures.

– Feedback improvements for defect correction. Tools should not only
be able to answer whether the model is correct. If the answer is no, the tool
should be able to explain where, why and how it can be corrected.

– Incremental verification. The specification of a model is an iterative pro-
cess where the model is continuously refined by means of adding, changing or



deleting some of its elements. Clearly, once a first version has been verified,
we should be able to prove the correctness of new model versions without
verifying the whole model again. Instead, only the “updated” parts should
be considered.

– Model normalization. Normalizing a model, i.e. rewriting complex mod-
eling constructs in terms of more basic ones, prior to the verification process
helps to reduce the complexity of the verification algorithms that now do
not need to consider the full language expressiveness. For instance, see [10]
for some rules for normalizing OCL constraints.

5 Conclusions

Model-level verification is a key step toward improving software correctness. De-
spite the amount of research efforts devoted to this problem, existing approaches
for model verification exhibit shortcomings that limit their applicability and
adoption in MDE projects. In this paper, we have identified these problems and
a possible set of research directions that may help in the creation of a new
generation of verification tools that offer effectiveness, efficiency and usability.

References

1. Jones, C., O’Hearn, P., Woodcock, T.J.: Verified software: A grand challenge.
IEEE Computer 39(4) (2006) 93–95

2. Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH Zurich
(2006)

3. Queralt, A., Teniente, E.: Reasoning on UML class diagrams with OCL constraints.
In Embley, D.W., Olivé, A., Ram, S., eds.: ER. Volume 4215 of Lecture Notes in
Computer Science., Springer-Verlag (2006) 497–512

4. Baruzzo, A., Comini, M.: Static verification of UML model consistency. In Hearn-
den, D., S, J., Rapin, N., Baudry, B., eds.: 3rd Workshop on Model Design and
Validation (MoDeV2a). (2006) 111–126

5. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: MoDeVVa 2008. ICST Workshop. (2008) available
online: http://gres.uoc.edu/pubs/MODEVVA08.pdf

6. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2007). Volume 4735 of Lecture
Notes in Computer Science. (2007) 436–450

7. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams.
Artificial Intelligence 168 (2005) 70–118

8. van der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logic
to maintain consistency between UML models. In: Proceedings of 6th International
Conference UML 2003 - The Unified Modeling Language. (October 2003) 326–340

9. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT an SAT Modulo Theo-
ries: from an Abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM 53(6) (November 2006) 937–977

10. Cabot, J., Teniente, E.: Transformation techniques for OCL constraints. Science
of Computer Programming. 68(3) (2007) 179–195


