
Electronic Communications of the EASST
Volume 36 (2010)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2010)

OCL Tools Report based on the IDE4OCL Feature Model

Joanna Chimiak–Opoka, Birgit Demuth, Andreas Awenius, Dan Chiorean, Sébastien Gabel,
Lars Hamann, Edward Willink

18 pages

Guest Editors: Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



ECEASST

OCL Tools Report based on the IDE4OCL Feature Model

Joanna Chimiak–Opoka1, Birgit Demuth2, Andreas Awenius3, Dan Chiorean4,
Sébastien Gabel5, Lars Hamann6, Edward Willink7

1 University of Innsbruck, Austria, joanna.opoka@uibk.ac.at
2 Technische Universität Dresden, Germany, birgit.demuth@tu-dresden.de

3 EmPowerTec AG, Petershausen, Germany, andreas.awenius@empowertec.de
4 Babes-Bolyai University, Romania, chiorean@cs.ubbcluj.ro

5 CS Communication & Systems Group, Toulouse, France, sebastien.gabel@c-s.fr
6 Universität Bremen, Germany, lhamann@informatik.uni-bremen.de

7 Eclipse Modeling Project, ed@willink.me.uk

Abstract: Previously we have developed the idea of an Integrated Development
Environment for OCL (IDE4OCL). Based on the OCL community’s feedback we
have also designed and published an IDE4OCL feature model. Here we present a
report on selected OCL tools developed by the authors and their teams. Each author
gives an overview of their OCL tool, provides a top level architecture, and gives an
evaluation of the tool features in a web framework. The framework can also be used
by other potential OCL users and tool developers. For users it may serve as an aid
to choose a suitable tool for their OCL use scenarios. For tool developers it provides
a comparative view for further development of the OCL tools. Our plans are to
maintain the collected data and extend this web framework by further OCL tools.
Additionally, we would like to encourage sharing of OCL development resources.

Keywords: OCL, IDE4OCL, feature model, OCL tool

1 Introduction

For almost 15 years the Object Constraint Language (OCL) has been extensively discussed and
used in multiple contexts. At the beginning it was used only on paper without parsing and
any kind of checking. Subsequently OCL became a language supported by a range of serious
tools and tool environments. However, most OCL users experienced that the OCL tools did not
fulfill all of their desired requirements. Therefore in 2009, we started to work on an idea for
an Integrated Development Environment for OCL (IDE4OCL). The overview of our research
process is depicted in Fig. 1.

In the first step we did a systematic requirements analysis for an IDE4OCL [CDSR09]. We
provided a definition of domain concepts from the pragmatic perspective of how OCL is used. It
included an OCL tools landscape overview describing the interactions between an IDE4OCL and
other modelling and development tools, use cases for each of the components, and 21 features of
an IDE4OCL.

In 2010, based on an extensive online survey1, comments of the survey participants and in-
1 The survey is still open and available at http://squam.info/survey/index.php?sid=11161. The statistical evaluation
of the collected and analysed feedback from over 100 respondents is to be published.

1 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

Online Survey and Interviews

2010

Pilot 
Evaluation

Statistical
Analysis

2009 2011

Web Framework

Set of 21 
Predefined

Features

Set of 13
Proposed
Features

Idea of IDE4OCL

OCL 
Workshop 

Paper

OCL 
Workshop 

Paper

OCL Tool 
Report

(this paper)

Detailed
Feature
Model

Initial 
Feature 
Model

Figure 1: An overview of the research related to the idea of an IDE4OCL.

terviews within the OCL community we analysed, extended and evaluated the set of features.
Then we categorized this consolidated set of features into groups of features. The three top level
categories are: language and model support, user–friendly support and architectural support.
Furthermore all features were designated as mandatory, optional or alternative. This categoriza-
tion resulted in a feature model [CD10a]. We initially used the feature model for a structured
description of tools developed in Dresden and Innsbruck in a joint developers meeting. In this
meeting we made slight improvements to the feature model.

This year in order to collect data from the community of tool providers, we developed a web
framework that enables choice of tools based on feature selection2. To extend the scope of our
research we decided to do an analysis of well–known OCL tools from the IDE4OCL perspective.
Our ultimate goal is to look for academic and industrial partners who are willing to collaborate
in the further development of the IDE4OCL vision within an open source project.

The remainder of this paper is structured as follows: In the next section we present used me-
thodology. In Section 3, we give systematic descriptions of the selected OCL tools. Section 4
gives an analysis of these descriptions along with the data collected in the web framework. Sec-
tion 5 summarizes the results of the OCL tools report and proposes the next steps in OCL tool
development.

2 Methodology

In this section we provide a description of our methodology for selection of the OCL tools
(Section 2.1), gathering tool descriptions (Section 2.2) and the web framework to collect detailed
data (Section 2.3).

2.1 Selection Criteria

From our perspective an IDE4OCL tool is the core component that provides a user–friendly front
end to other OCL related tools (Fig. 2). The main functionality of an IDE4OCL is to support
the user in the specification, evaluation and verification of OCL statements as well as in project
management.

2 It is available at http://ide4ocl.opoki.com/featuremodel/.

Proc. OCL 2010 2 / 18



ECEASST

Transform OCL into Tests
<<Realizations>>

Testing Tool

Design Models and Model Instances
Analyse Model Instance with OCL

Verify Model Instances with OCL

<<Realizations>>

Modeling Tool

Evaluate Statement

Specify Statement
Verify Statement

<<Realizations>>

Manage Project

IDE4OCL

Reason on/ Check Project
<<Realizations>>

Formal Verification Tool

Store and manage models/projects
<<Realizations>>

Repository

Use OCL for Model Transformations
Transform OCL into Code
<<Realizations>>

MDE Tool

Project

Evaluation Results Project

Project

Package,
OCL Expression

Model

Model,
Model Instance,

Project

Project

Evaluation Results

Package,
Model Instance

Figure 2: A simplified OCL tool landscape from [CDSR09], where an exact description of all
components can be found.

We tried to select a representative collection of OCL tools best fitting to the idea of IDE4OCL
(Table 1). We do not claim that our list is complete and a longer list covering various types of
OCL tools is available at the OCL Portal3. There remain other OCL tools to be studied to get a
full picture of the state of the art.

2.2 Gathering Descriptive Data

We contacted the developers of the selected tools and asked them to contribute to our report.
Each tool developer gave a short characterization of the OCL tool including a top level archi-
tecture view of the OCL and related tool components in relation to the OCL tools landscape
(Section 3). Moreover, each person evaluated the features of the respective tool based on the
IDE4OCL feature model using our web framework (Section 2.3).

2.3 Gathering Detailed Data

For the purpose of this research we required a tool combining feature modelling and a survey
engine. The technical requirement was multi–user / web access. As we could not find a suitable
framework we developed one4.

3 List of OCL tools: http://st.inf.tu-dresden.de/oclportal/index.php?option=com content&view=category&id=8&Itemid=26
4 The platform was developed using Django (http://www.djangoproject.com/), Dojo toolkit (http://dojotoolkit.org/)
and MySQL database (http://www.mysql.com/).

3 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

Table 1: An overview of OCL tools in the web framework.

Dresden OCL : http://www.dresden-ocl.org/
Owner : Technische Universitaet Dresden, Germany
Licence : LGPL
Current Version : 3.1.0 (released on 2011-01-17)
Supported OCL Version(s): OCL 2.2 / OCL 2.3
Information provider(s) : Birgit Demuth, Claas Wilke
Eclipse OCL : http://wiki.eclipse.org/MDT/OCL
Owner : Eclipse Foundation
Licence : EPL v1.0
Current Version : 3.1.0 (released on 2011-06-22)
Supported OCL Version(s): OCL 2.3
Information provider(s) : Ed Willink
Oclarity : http://www.empowertec.de/products/oclarity/
Owner : EmPowerTec AG
Licence : Commercial license, but free of charge for any use
Current Version : 2.2 (released on 2010-11-22)
Supported OCL Version(s): OCL 2.0
Information provider(s) : Andreas Awenius
OCLE : http://lci.cs.ubbcluj.ro/ocle/
Owner : Babes-Bolyai University of Cluj-Napoca
Licence : LGPL
Current Version : 2.04 (released on 2005-07-15)
Supported OCL Version(s): OCL 2.0
Information provider(s) : Dan Chiorean
SQUAM OCL : http://squam.info/
Owner : University of Innsbruck, arctis GmbH
Licence : dual: academic and commercial
Current Version : 0.8.0 (released on 2010-10-18)
Supported OCL Version(s): OCL 2.0 (MDT OCL Eclipse Galileo)
Information provider(s) : Joanna Chimiak-Opoka, Hannes Moesl
TOPCASED VF : http://gforge.enseeiht.fr/projects/topcased-vf/
Owner : TOPCASED consortium
Licence : EPL v1.0
Current Version : 4.3.0 (released on 2011-02-07)
Supported OCL Version(s): OCL 2.3 (tooling based on Eclipse MDT OCL)
Information provider(s) : Sebastien Gabel
USE : https://sourceforge.net/projects/useocl/
Owner : University of Bremen, Database Systems Group
Licence : GNU General Public License (GPL)
Current Version : 2.6.2 (released on 2010-11-02)
Supported OCL Version(s): OCL 2.2
Information provider(s) : Lars Hamann

Proc. OCL 2010 4 / 18



ECEASST

The web framework provides the following content and functionality (accessible from sepa-
rate [tabs]):
[About] —description of the process and list of contributors,
[Features] —list and description of OCL tools registered in the system,
[OCL Tools] —list and description of all features (predefined, proposed, and additional),
[Feature Model] —presentation or gathering information about features in each tool (Fig. 3),
[Statistics] —overview illustrations of the data collected in the system,
[Overview Table]—a spread sheet with data for all tools with sorting and filtering functionality.

Figure 3: A partial screen shot of the data gathering view. From the left: tool description, feature
model, and feature details.

In the feature model the following states of features are possible to select: implemented, third–
party tool, under development, planned, not supported. We intentionally did not use partially
implemented as it has too broad and fuzzy meaning. Data in the web platform was provided by
the authors of this paper (registered users). This data is available to all visitors of the platform.

The web framework is intended both to be an aid for potential OCL users to choose the best
tool for their concrete OCL use scenarios and to provide a comparative view to aid the develop-
ment of OCL tools in the future. Our intention is to maintain the existing tool evaluations over
the time as new releases of the OCL tools become available. Currently, data about seven OCL
tools described in the next section is collected, but in the future we plan to include further OCL
tools.

3 Selected OCL Tools

The subsequent sections give structured descriptions of the selected OCL tools (Table 1). Each
tool description comprises a summary of its development history, a description of the tool(s) in
the context of the OCL landscape, success stories and future development plans. In the illus-
trations of particular OCL tools we used stereotyped components (Fig. 2) relating to different
components’ roles5.

5 In the following we use for the Formal Verification Tool the acronym FV Tool.

5 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

3.1 Dresden OCL

DRESDEN OCL6 is a mature toolkit widely used in teaching, research and practice. It supports
the specification and evaluation of OCL constraints and queries, and can be used for several
metamodels, on different metamodel layers and in several technical spaces [HDF02], [DW09],
[WTW10].

In 1999, we started with the implementation of the standard library and a parser for OCL
initially called DRESDEN OCL TOOLKIT. The idea was to provide an open-source third-party
library of OCL tools that can be easily integrated with other modelling tools. The development
of DRESDEN OCL now spans more than a decade and was mainly influenced by the progress
in OCL research, the evolving OCL standard, and the evolution of the Model Driven Software
Development tool landscape. Consequently, both the architecture of DRESDEN OCL and single
tools in the toolkit were revised and re-engineered in an iterative process. From an architec-
tural point of view we implemented three major releases. The commonality of the first and
second release was that the specification and evaluation of OCL constraints was focused mainly
on UML/MOF-based models. The third and current release (see Figure 4) accommodates the
mainstream in model-driven development and is therefore adapted to Eclipse/EMF applications.
It basically provides an EMFTEXT7-based OCL EDITOR (including an OCL PARSER) and an
OCL INTERPRETER as parts of a future IDE4OCL as well as MDE Tools for Java code genera-
tion (OCL2JAVA), for Java code instrumentation (OCL2ASPECTJ) and for SQL code generation
of database schemas and queries (OCL2SQL). User access to models is provided by the MODEL

BUS.

«Repository»

Model Bus

«IDE4OCL »

OCL Evaluator

«MDE Tool»

OCL2AspectJ

«MDE Tool»

OCL2SQL

«IDE4OCL »

OCL Parser

«IDE4OCL »

OCL Editor

«MDE Tool»

OCL2Java

«use» «use»

Figure 4: Dresden OCL tools.

DRESDEN OCL is integrated into several modelling tools such as ARGOUML and MAGIC-
DRAW UML and has been used in many research projects 8.

We are currently integrating support for OCL refactorings into the OCL EDITOR. Further-
more, we have been experimenting with the integration of OCL into other languages [HJS+10].
In future, we plan to research debugging OCL expressions. We also plan scalability enhance-
ment in OCL evaluation because case studies have shown that there are performance problems
evaluating large OCL packages on large models and/or large collections of objects.

6 http://www.dresden-ocl.org/
7 http://www.emftext.org/
8 http://www.dresden-ocl.org/index.php/DresdenOCL:SuccessStories

Proc. OCL 2010 6 / 18



ECEASST

3.2 Eclipse OCL

The ECLIPSE OCL9 project provides an implementation of the OMG OCL specification for use
with Ecore and UML models on the Eclipse platform. The initial code contribution from IBM
provided a Java API for parsing and evaluation for Ecore meta–models. Subsequent evolution
has added support for UML meta–models, and an interactive evaluation console.

More recently, the Eclipse Xtext DSL tooling has been used to provide four different OCL
editors (Fig. 5). The ESSENTIALOCL EDITOR provides minimal expression capability and is
embedded as the input editor for the OCL CONSOLE which supports interactive evaluation of
queries over models loaded elsewhere in Eclipse. The OCLINECORE EDITOR supports editing
OCL embedded within an Ecore meta–model. The embedded OCL is executed when invariants
are checked, operation bodies executed or property derivations evaluated. The COMPLETEOCL
EDITOR supports the OMG syntax for independent OCL documents. Both OCLINECORE and
COMPLETEOCL EDITORS may be used to define semantic validations for a DSL developed
with Xtext. The OCLSTANDARDLIBRARY EDITOR maintains standard and custom library def-
initions. The IMPACT ANALYZER exploits the formality of OCL to optimize re–evaluation of
OCL expressions over models in response to model element changes; 1000–fold improvements
have been measured.

«IDE4OCL »

OCLStandardLibrary Editor

«IDE4OCL »

CompleteOCL Editor

«IDE4OCL »

OCLInEcore Editor

«IDE4OCL »

OCL Evaluator

«IDE4OCL »

EssentialOCL Editor

«IDE4OCL »

Impact Analyzer

«IDE4OCL »

OCL Console

«IDE4OCL »

OCL Parser

«use»«use»«use»

«use»

«use»
«use»

Figure 5: Eclipse OCL tools

ECLIPSE OCL is used by a variety of Eclipse projects10 such as Connected Data Objects
(CDO) to support server–side OCL queries on a model repository, by MODISCO for enhanced
model browsing and by the Business Intelligence and Reporting Tools (BIRT) to support inte-
gration of model content in reports. The OCL PARSER was made extensible so that ACCELEO

(MOFM2T), QVTc, QVTr and QVTo can exploit the OCL grammar and parsing. The personnel
overlap between ECLIPSE OCL and the OMG OCL RTF has led to ECLIPSE OCLprototyping
a candidate solution to many problems of ambiguity and under–specification in the OCL 2.3
specification. The Indigo (June 2011) ECLIPSE OCL release includes an extensible modeled
OCL Standard Library [Wil11b] and a UML–derived intermediate pivot meta–model [Wil11a].
The pivot meta–model resolves significant issues in XMI persistence and useability of Complete
OCL.

The new tooling is being used to fully model the OCL specification, with the multiple goals
of debugging the specification, exploiting OCL in the auto–generation of Xtext–based tool-
ing [Wil10] and defining new APIs that may be shared by alternative OCL implementations.
OCL code generation is planned so that OCL embedded in Ecore meta–models can execute di-
rectly as Java rather than as interpreted OCL.

9 Also known as ECLIPSE MDT/OCL, http://wiki.eclipse.org/MDT/OCL
10 http://www.eclipse.org/projects/

7 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

3.3 OCLE

The Object Constraint Language Environment (OCLE11) is a tool meant to support MDE.
OCLE enables developers to improve the quality of software applications by direct-engineering
and design by contract. OCLE supports the construction of compilable UML models (complying
with the UML WFRs) and their refinement by adding observers and OCL assertions. Following
the validation of OCL specifications on appropriate model instantiations, the specifications in
question can be translated into Java and injected within application code.

Initially designed within the NEPTUNE12 project, OCLE was conceived to support validation
of UML models against WFRs, including the specification, testing and improvement of rules
defined at the metamodel level and the debugging of UML models in case of rule violation.
Later on, it was extended to support OCL specifications at the user model level. Unlike all the
other tools presented in this paper, OCLE’s development was stopped in 2005; however, the
tool continues to be used in both education and research (see [CBCS04, CPP08, PBO07, Wah08,
Jam05, Woo05]). Below, we describe the main features distinguishing OCLE from other OCL
tools.

«Modeling Tool»

Diagram editor

«Repository»

UML 1.5.1

«IDE4OCL »

OCL Parser

«IDE4OCL »

OCL Editor

«IDE4OCL »

OCL Evaluator

«MDE Tool»

OCL2Java

«use»«use»

Figure 6: OCLE tools.

The metamodel is fully compliant with the UML 1.5.1 standard. The OCL 2.0 specification is
almost entirely implemented, including some functionalities of the OCL 2.3 release, such as se-
mantic closure. Models and their instantiations can be either constructed in an easy and intuitive
manner using diagram editors, or can be imported by means of the XMI 1.0 or 1.1 standards.
OCLE is a standalone tool, the only resource required being JRE or JDK 1.5, or a later version.
OCLE enables an unrestricted access to the UML metamodel structure, Additional Operations
and Well Formedness Rules. Extending the behavior of OCL types (including primitive types)
can be easily accomplished, by specifying the new observers by means of a def let decla-
ration in an “*.ocl” file, inside the namespace package Foundation::Data Type ...
endpackage. Reusing such extensions is easy: simply attach the corresponding “*.ocl” file(s)
to the desired project. Therefore, OCLE supports the reuse of OCL specifications written at
the metamodel level. The compilation and evaluation of literal OCL expressions does not re-
quire an active model. The Objects obtained as result of evaluating entire OCL specifications,
or subexpressions only, can be navigated in an automated manner, from the editor containing
the specification, to the Evaluation tab, model browser and corresponding diagrams. OCLE
supports test-driven specification development. As future work, we plan to extend the OCL sup-
port to Model Driven Architecture-based languages, as well as to implement the new OCL 2.3
release.
11 http://lci.cs.ubbcluj.ro/ocle
12 the IST 1999-20017 FP5 EU research project, see http://neptune.irit.fr

Proc. OCL 2010 8 / 18



ECEASST

3.4 SQUAM OCL

SQUAM OCL13 stands for Systematic QUality Assessment of Models with OCL. It is a frame-
work integrating heterogeneous modelling environments, and supporting model quality analysis
with user–defined OCL libraries. Our mission is to make writing OCL expressions easy, and
thus contribute to improvement of the pragmatics and increase of the usage scope of this lan-
guage. As the aim of the framework is to enable user–friendly specification and evaluation of
OCL expressions, it is convergent with the idea of an IDE4OCL.

Development of the current version of SQUAM OCL started at the University of Innsbruck
at the end of 2007 and resulted in an advanced OCL editor [Ars08] based on Eclipse MDT OCL.
The user–friendly editor enabled usage of user–defined OCL libraries, OCL unit tests and OCL
documentation [CO09]. This part is available as the open source community edition (CE). Later,
up to the end of 2010, the development of further components was continued together with our
industrial partner, arctis14, within the SoftNet competence network15. This part is available under
academic / evaluation / commercial licence as the professional edition (PE).

Currently SQUAM OCL consists of two editions (CE, PE) and several plug–ins (Fig. 7).
OCLEditor (CE) provides the front end functionality, with possibility to transform our library
extension to the standard OCL syntax. OCLEvaluator (CE) enables pre–parsing and is used
as a proxy to an OCL parser. It includes support of OCL libraries, OCL unit tests, OCL do-
cumentation [CO09] and integration of OCL back box extensions in Java or other languages.
ModelingTool (PE) provides functionality to generate reports for sets of OCL queries, run and
store them in a database. It additionally allows navigation from a model element to a query, and
evaluation of this query. CheckStyle (PE) automatically runs queries and each time a predefined
OCL expression is violated. The result of a query is listed in the problem view.

«Other»

Check Style

«IDE4OCL »

OCL Extensions

«Modeling Tool»

Modeling Tool

«IDE4OCL »

OCLLib

«IDE4OCL »

OCL Evaluator

«IDE4OCL »

OCL Editor

«IDE4OCL »

OCLUnit

«IDE4OCL »

OCLDoc

«use» «use»«use»«use» «use»«use»

Figure 7: Main components of SQUAM OCL.

The SQUAM OCL approach was successfully used in teaching and research contexts. We
used it to develop an OCL Standard Library course [CD10b], a set of UML class diagram met-
rics [CO09], quality [CAB10] and coverage criteria [FCZ+11] for domain specific languages
defined as UML profiles. SQUAM OCL was also used with both Ecore and XML models.

Our short term goal is to integrate our OCLEvaluator with the Dreseden OCL parser. In the
next version, the user should be able to select one of the two parsers. Another short term goal is
to integrate our tool with a model repository tool developed within another project at our research
group, and use OCL for evaluation of state diagrams and comparison of model versions.

13 http://squam.info/
14 arctis Softwaretechnologie GmbH, http://www.arctis.at/.
15 Softnet Austria is a private research association cooperating with business and university partners to conduct and
promote applied research in software engineering: http://www.soft-net.at/.

9 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

3.5 TOPCASED VF

TOPCASED16 (Toolkit in OPen–source for Critical Application and SystEms Development)
is a modular, open–source, Eclipse–based software environment providing methods and tools
for critical embedded systems development. This platform relies on Eclipse Modeling Projects
(EMP) to address concerns such as modelling, model transformation, requirements traceability,
code generation, document generation and model verification [FGC+06].

Among all these issues, OCL is widely used by the TOPCASED Validation Framework17

(VF) component to verify the consistency of industrial models at any time during the modelling
phase. Developed between 2005 and 2009, TOPCASED VF offers a transparent integration with
all TOPCASED modelers (UML, SysML, AADL, SAM,...). This set of plug–ins, exclusively
based on ECLIPSE OCL, allows the user to write OCL rules, evaluate them on UML/MOF–
based models and visualise the results in a dedicated human–machine interface.

The OCL EDITOR provides basic features such as syntax highlighting, content assist, prob-
lem/warning markers, comments and custom message support (Fig. 8). The OCL CHECKER

evaluates OCL queries and stores the information inside a result model built on the fly. This
result model is exploited through a multi–tab user interface where a distinction is made between
check and metric rules. The verification results of these rules are reported into the Eclipse prob-
lem view. Corresponding decorators are displayed on graphical elements to help with identifying
erroneous or incorrect elements. A double click on a problem marker sets the focus to the corre-
sponding element represented in a diagram or in the outline. After any check operation, a textual
or HTML report can be generated to keep track of the current state (OCL REPORTING). The
OCL EVALUATOR can be considered as a tool assisting the end user to express complex OCL
expressions. Custom message mechanisms may be used. They define a range of criticality levels
to inform the user about violated constraints and can themselves contain OCL expressions. These
interpreted messages are directly injected into the user interface where the results are presented.

«IDE4OCL »

OCL Reporting

«IDE4OCL »

OCL Evaluator

«IDE4OCL »

OCL Editor

«IDE4OCL »

OCL Checker

Figure 8: The main tools included in TOPCASED VF.

The TOPCASED VF approach has been deployed and has been used in the context of large
avionic development processes. It was notably the case in 2008 when SAM (Structured Analysis
Model) [CGP09], a graphical language dedicated to functional division activities, was introduced
in several pilot projects at Airbus18 to support software specification. For this purpose, about
eighty OCL rules have been defined to verify the static semantic of SAM models. Our future
works will consist of offering the possibility to switch from an OCL library to another, as well
as supporting other types of custom messages in order to enforce their usage.

16 http://www.topcased.org/
17 http://gforge.enseeiht.fr/projects/topcased-vf/
18 http://www.airbus.com/

Proc. OCL 2010 10 / 18



ECEASST

3.6 USE

The UML-based Specification Environment (USE)19 supports developers in the early design
stages to validate models specified in a subset of the UML [GBR07]. The first version of USE
was published in 1998 as a Ph.D. project to provide an implementation of the formal OCL se-
mantics. Since that, several extensions have been integrated into USE.

USE supports the definition, validation and runtime checking of OCL invariants, pre- and post-
conditions. USE employs a simple textual language to define models. Snapshots of models can
be built manually by using a COMMAND LANGUAGE, semi-automatically with a built-in SNAP-
SHOT GENERATOR or by a Simple OCL-based Imperative Language (SOIL). The snapshot gen-
erator can be used to explore larger snapshots in an automatic way by specifying ASSL (A Snap-
shot Sequence Language) procedures which search for valid system states [GBR05]. It can be
used to explore formal aspects like consistency of the specified model as described in [GKH09].
The created snapshots can be explored by evaluating OCL queries as well as in a visual way
by combining OCL queries with diagrams, e. g., hiding or showing all instances returned by a
query [GHXZ11]. The OCL PARSER performs a static check of OCL expressions when loading
a model or when entering a query and reports encountered errors to the user, e. g., violations of
type conformance. The OCL VALIDATOR can automatically check the validity of the defined
STATIC constraints, (e. g., invariants) and dynamic constraints, (e. g., pre- and postconditions)
after every change to the snapshots. Changes can be visualized by sequence diagrams. To debug
OCL expressions USE provides an EVALUATION BROWSER which allows the user to examine
the evaluation steps of an expression in detail. EXTENSIONS to the standard OCL types can be
made by defining operations in Ruby. Specified constraints can be tested by running OCL UNIT

TESTS against valid and invalid model instances similar to other xUnit frameworks [HG10].

«FV Tool»

Snapshot Generator

«IDE4OCL »

Evaluation Browser

«Modeling Tool»

OCL Validator
(dynamic aspects)

«Modeling Tool»

OCL Validator
(static aspects)

«Modeling Tool»

Command 
Language

«Modeling Tool»

SOIL

«IDE4OCL »

OCL 
Extensions

«IDE4OCL »

OCL Evaluator

«IDE4OCL »

OCL Unit Tests

«IDE4OCL »

OCL Parser

Figure 9: USE tools

USE is successfully utilized in modelling courses at the University of Bremen and several
national and international universities. As a library it is integrated into a German federal gov-
ernment software product called XGenerator as a validation and query engine. The XGenerator
is used to transform profiled UML models into data exchange specifications and large parts of
their documentation. A more detailed description of the XGenerator can be found in [BKG+08].
In the next release, USE will support more UML 2 features like relations between association
ends, e. g., subsets and qualified associations. Further, the graphical part of USE is going to be
improved. Future releases are going to provide a small but complete API to USE. This will make
the integration of USE into applications as well as the development of plugins for USE easier.

19 http://sourceforge.net/projects/useocl/

11 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

3.7 Oclarity

OCLARITY20 is a standalone tool which is intended to provide an integrated authoring environ-
ment to learn OCL with little effort. It’s focus is on ease of setup and use, not on a rich feature
set. Oclarity only checks the validity of OCL expressions and provides no runtime support.

The first version of OCLARITY was implemented as an AddIn for RATIONAL ROSE, with the
intent to create a commerical product. This version was released in 2003. After Rational was
aquired by IBM we no longer saw a commercial perspective for OCLARITY and decided to make
the existing functionality available as free software. During this step, we did a major redesign, to
make OCLARITY independent of a specific modelling tool. This reworked version of OCLARITY

was first released in 2008.
OCLARITY is a standalone program. It reads XMI files from supported modelling tools. Cur-

rently, ENTERPRISE ARCHITECT and MAGICDRAW are supported. OCLARITY cannot be inte-
grated with other software nor does it integrate other OCL software.

«IDE4OCL »

OCL Editor

«IDE4OCL »

OCL Parser

«use»

Figure 10: Oclarity tool

With OCLARITY we attempt to provide a faithful implementation of the OCL 2.0 standard. It
is our intention to correct all reported errors concerning the language standard or other existing
functionality. A migration to the OCL 2.3 standard might happen in the future, depending on
interest and demand from the users. Otherwise, there are no plans to add new functionality to
OCLARITY.

4 Data Analysis

Our intention is to collect data to enable users to select an OCL tool appropriate for their usage
scenarios. The features in the feature model are of different granularities and their importance
depends on the usage purpose. Because of this creating a general or quantitative measurement
statistics suppresses important details and should not be used for tool comparison.

The validity of collected data is limited, as the information was provided directly by developers
of the OCL tools, who may be less objective and critical than an average user. Moreover, there
is no information collected about quality of implementation, tests and documentation. Thus no
conclusion on maturity nor user–friendliness of tools can be drawn. Despite of these limitations,
the collected data provide interesting insights related to architectures and available features of
the presented OCL tools.

In this section we will give conclusions based on the tool descriptions included in this paper
(Section 4.1) and the data collected in the web framework (Section 4.2).

20 http://www.empowertec.de/products/oclarity/

Proc. OCL 2010 12 / 18



ECEASST

4.1 Architectural Components

The main selection criteria for the presented tools was their potential to serve as an IDE4OCL,
thus all of them have components providing this functionality (Fig. 11). The main purposes of
the OCL tools are varied and can be illustrated by their top level architectures. They include
components relating to different parts of the OCL landscape: OCLE, SQUAM and USE provide
functionality of a modelling tool; USE additionally provides functionality for formal verification;
and DRESDEN OCL and OCLE provide functionality of a model driven engineering tool and a
repository.

Figure 11: Overview of OCL tool landscape coverage. Functionality of highlighted components
(gray) is partially provided by particular tools.

Looking deeper into the component architectures, it is possible to see similarities and varia-
tions between the OCL tools and their way of supporting the IDE4OCL functionality (Table 2).
Almost all tools have an OCL parser, an OCL evaluator and an OCL editor. All tools, except
SQUAM and TOPCASED–VF, have their own OCL parsers. SQUAM and TOPCASED–
VF are based on ECLIPSE OCL. All tools, except OCLARITY, have an OCL evaluator. And all
tools, except USE have an own OCL editor. The OCL tools differ in components improving
and extending OCL. ECLIPSE OCL provides an impact analyser to optimise re–evaluation of
OCL expressions. SQUAM provides support of OCL Lib, OCL Unit, and OCL Doc [CO09]
and black box extensions in Java or other languages. TOPCASED–VF provides OCL Checker
and OCL Reporting to store OCL evaluation results inside a result model built on the fly and to
generate a HTML report. USE provides OCL Unit and OCL Extensions in Ruby. The support
of OCL unit tests in SQUAM OCL and USE differs as each tool implements own extensions
for OCL [CO09, HG10].

Although it was not mentioned in the descriptions of the tools it is interesting to notice the
technical similarities of the OCL tools. Almost all tools are written in Java, only OCLAR-
ITY uses the .NET framework. Implementations of DRESDEN OCL, ECLIPSE OCL, SQUAM
OCL and TOPCASED VF use the EMF that enables to integrate various Eclipse tools related to
modelling as third–party tools.

13 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

Table 2: OCL tools and their native components with functionality of an IDE4OCL.

Dresden OCL Eclipse OCL Oclarity OCLE SQUAM OCL TOPCASED-VF USE
OCL Parser + + + + +
OCL Evaluator + + + + + +
OCL Editor + + + + + +
Impact Analyser +
OCL Libraries +
OCL Doc +
OCL Extensions + +
OCL Checker +
OCL Reporting +

4.2 Available Features

We have analysed the availability of features in the presented OCL tools. Below we present only
the insights interesting from our point of view, i.e. we focus on the feature coverage. The full
list of available features and other statistics can be found on–line at http://ide4ocl.opoki.com/.

There are four features which are implemented in all presented tools: basic editing, document
interface, syntax highlighting, and syntax compliance according different OCL specification ver-
sions. It is partially meets the main needs of OCL users, as syntax highlighting and basic editing
were identified as the most important features [CD10a]. The remaining most wanted features
are auto–completion, debugging and refactoring support. The auto–completion feature is imple-
mented in four of the tools, under development in one and planned in another. Debugging is
complex, has many sub–features and is a rather new feature in the context of OCL. Several tools
support single sub–features of debugging.

We are also interested what features are unique to single tools21. DRESDEN OCL is the only
tool that comes with an MDE tool supporting the model transformation feature. Its OCL2SQL
tool not only generates SQL code evaluating OCL expressions but also transforms UML models
to relational views (called object views [DHL01]). ECLIPSE OCL provides a hybrid OCL/MOF
view. SQUAM OCL is the only tool providing generation of documentation out of OCL Doc
comments [CO09]. This feature is under development in ECLIPSE OCL. And SQUAM OCL
uniquely provides statement coverage support related to the usage of OCL definitions in OCL
queries and OCL unit tests [CO09]. Several debugging issues are implemented only in USE
(variable watching, value insertion, automating test cases), but they are planned in DRESDEN

OCL, ECLIPSE OCL and OCLE. USE uniquely provides modularisation of language, but it
will probably soon change, as is currently under development in DRESDEN OCL [WTZ10] and
ECLIPSE OCL.

To recognise emerging trends it is interesting to have a look at features not implemented yet,
but under development: Further and extensive refactoring techniques are under development in
DRESDEN OCL. Standardisation related features, visibility and lexical scoping and XMI com-
pliance, are under development in ECLIPSE OCL. And USE will be extended by a testing tool.

21 Tools are presented in the alphabetical order.

Proc. OCL 2010 14 / 18



ECEASST

5 Conclusion

This report is the third part in a series of preceding papers [CDSR09, CD10a] analysing the re-
quirements of OCL users for an ideal Integrated Development Environment for OCL and the state
of existing OCL tools. We refined and documented the IDE4OCL feature model within a web
framework that is available online for the public, and which is extensible for further OCL tools.
We then used the web framework to collect data from seven well–known OCL tools (DRESDEN

OCL, ECLIPSE OCL, OCLARITY, OCLE, SQUAM OCL, TOPCASED VF, USE) describing
their supported features according to the IDE4OCL feature model. Each of these tools is briefly
textually described. Furthermore, the architectural components of each OCL tool are classified
into the OCL tools landscape. This is surely a simplified view of the heterogenity of existing
tools but provides a comparative view of the selected OCL tools. Both the analysis of the ar-
chitectural components and of the features provide together a first comparative and quantitative
evaluation of existing OCL tools.

The question for a qualitative comparison is a critical issue and could be a subject for further
work. Firstly it should be noted again that all data were provided by the OCL tool developers
themselves. This ensures a deep insight into the tool, but may obstruct an objective view of
how effective a tool is. Furthermore, we noticed during the data collection that a few of our
applied feature evaluation values (implemented, third-party tool, under development, planned,
not supported) could be misunderstood and insufficient. Potentially in a next step, we should
extend the evaluation values by partially implemented and fully tested. However, this would
need first a solid discussion about the semantics of these values.

All in all, we are sure that the results of this OCL tools report both help potential OCL users
to choose a suitable OCL tool, and highlight emerging trends in OCL tool development that are
especially helpful for tool developers. In this sense, feedback and suggestions concerning all
OCL tools are welcome. Please send emails to the authors/OCL tool developers if you want to
get in touch with them.

Last but not least it should be emphasized that it is still our goal to promote and discuss
possibilities of cooperation to drive the further development of OCL tool support that is suitable
in any (meta-)modelling environments and languages, and for advanced industrial applications.

Acknowledgement We would like to express our gratitude to contribution of Darius Silingas
and Nicolas F. Rouquette as co–authors of our first paper related to the idea of IDE4OCL [CDSR09].
We want to express our thanks to students and Ph.D. students at TU Dresden and University of
Innsbruck for their support from the initial phase of this project: Claas Wilke, Michael Thiele
and Hannes Moesl, Ekrem Arslan, Cornelia Haisjackl. We are also thankful for the encouraging
discussion with Robert France we had at MODELS 2010. We would like to thank Jim Arlow for
his help in the finalisation of the paper.

15 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

Bibliography

[Ars08] E. Arslan. Advanced OCL Editor. B.Sc. thesis, University of Innsbruck, 2008.

[BKG+08] F. Büttner, M. Kuhlmann, M. Gogolla, J. Dietrich, F. Steimke, A. Pankratz,
A. Stosiek, A. Salomon. MDA Employed in a Joint eGovernment Strategy: An Ex-
perience Report. In Bailey (ed.), Proc. 3rd ECMDA Workshop “From Code Cen-
tric To Model Centric Software Engineering” (2008). European Software Institute,
http://www.esi.es/modelplex/c2m/program.php, 2008.

[CAB10] J. Chimiak-Opoka, B. Agreiter, R. Breu. Bringing Models into Practice: Design and
Usage of UML Profiles and OCL Queries in a showcase. In Targamadze et al. (eds.),
Proc. of the 16th Int. Conf. on Information and Software Technologies, IT’2010.
Pp. 265–273. Technologija, Kaunas, Lithuania, April 2010.

[CBCS04] D. Chiorean, M. Borteş, D. Coruţiu, R. Sparleanu. UML/OCL tools - Objectives,
Requirements, State of the Art - The OCLE Experience. In Proceedings of 11th
Nordic Workshop on Programming and Software Development Tools and Tech-
niques. Pp. 163–180. 2004.

[CD10a] J. Chimiak-Opoka, B. Demuth. A Feature Model for an IDE4OCL.
Electronic Communications of the EASST: OCL and Textual Modelling 36,
2010. (presented at OCL Workshop).

[CD10b] J. Chimiak-Opoka, B. Demuth. Teaching OCL Standard Library: First
Part of an OCL 2.x Course. 2010. (presented at EduSymp, to appear in
Electronic Communications of the EASST).

[CDSR09] J. Chimiak-Opoka, B. Demuth, D. Silingas, N. F. Rouquette.
Requirements Analysis for an Integrated OCL Development Environment.
Electronic Communications of the EASST: The Pragmatics of OCL and Other
Textual Specification Languages 2009 24, 2009. (presented at OCL Workshop).

[CGP09] A. Canals, S. Gabel, G. P. The SAM and OCL components of the TOPCASED
project. In Neptune’2009. Paris, France, May 2009.

[CO09] J. Chimiak-Opoka. OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for the
Object Constraint Language. In Schürr and Selic (eds.), MoDELS. LNCS 5795,
pp. 665–669. Springer, 2009.

[CPP08] D. Chiorean, V. Petraşcu, D. Petraşcu. How My Favourite Tool Supporting OCL
Must Look Like. ECEASST 15:1–17, 2008.

[DHL01] B. Demuth, H. Hußmann, S. Loecher. OCL as a Specification Language for Busi-
ness Rules in Database Applications. UML 2001-The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, 2001.

Proc. OCL 2010 16 / 18



ECEASST

[DW09] B. Demuth, C. Wilke. Model and Object Verification by Using Dresden OCL. In
Proceedings of the Russian-German Workshop Innovation Information Technolo-
gies: Theory and Practice, Ufa, Russia, July 25-31, 2009. P. 81. Ufa State Aviation
Technical University, Ufa, Bashkortostan, Russia, July 2009.

[FCZ+11] M. Felderer, J. Chimiak-Opoka, P. Zech, C. Haisjackl, F. Fiedler, R. Breu. Model
Validation in a Tool–based Methodology for System Testing of Service–oriented
Systems. International Journal On Advances in Software, May 2011. (to appear).

[FGC+06] P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crégut,
M. Pantel. The TOPCASED project: a Toolkit in OPen-source for Critical Appli-
cation and SystEms Development. In European Congress on Embedded Real-Time
Software. Toulouse, France, May 2006.

[GBR05] M. Gogolla, J. Bohling, M. Richters. Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Journal on Software and System Modeling
4(4):386–398, 2005.

[GBR07] M. Gogolla, F. Büttner, M. Richters. USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69:27–34,
2007.

[GHXZ11] M. Gogolla, L. Hamann, J. Xu, J. Zhang. Exploring (Meta-)Model Snapshots by
Combining Visual and Textual Techniques. In Proc. 10th Int. Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT’2011). 2011.

[GKH09] M. Gogolla, M. Kuhlmann, L. Hamann. Consistency, Independence and Conse-
quences in UML and OCL Models. In Dubois (ed.), Proc. 3rd Int. Conf. Test and
Proof (TAP’2009). Pp. 90–104. Springer, Berlin, LNCS 5668, 2009.

[HDF02] H. Hussmann, B. Demuth, F. Finger. Modular architecture for a toolset supporting
OCL. Sci. Comput. Program. 44:51–69, July 2002.

[HG10] L. Hamann, M. Gogolla. Improving Model Quality by Validating Constraints with
Model Unit Tests. In Proc. 7th Int. Workshop on Model-Driven Engineering, Verifi-
cation, and Validation (MODEVVA’2010). 2010.

[HJS+10] F. Heidenreich, J. Johannes, M. Seifert, M. Thiele, C. Wende, C. Wilke. Integrating
OCL and Textual Modelling Languages. In Proc. of Workshop on OCL and Textual
Modelling (OCL2010). 2010.

[Jam05] R. James. HSBC - Software Practice Advancement - Architecture Day - EAI via
MDA. 2005.
http://www.bcs-oops.org.uk/resources/mdaday/James-EAIViaMDA.pdf

[PBO07] R. Paige, P. Brooke, J. Ostroff. Metamodel-based Model Conformance and Multi-
View Consistency Checking. ACM Transactions on Software Engineering and Me-
thodology 13(3):13–61, 2007.
doi:10.1145/1243987.1243989

17 / 18 Volume 36 (2010)



OCL Tools Report based on the IDE4OCL Feature Model

[Wah08] M. Wahler. Model-Driven Software Development: Integrating Quality Assurance.
Chapter A Pattern Approach to Increasing the Maturity Level of Class Models,
pp. 204–235. Idea Group Inc., 2008.
doi:10.4018/978-1-60566-006-6.ch009
http://kuznyechik.googlepages.com/wahler-maturity-2008draft.pdf

[Wil10] E. D. Willink. Re-engineering Eclipse MDT/OCL for Xtext. MODELS 2010, OCL
Workshop, 2010.

[Wil11a] E. D. Willink. Aligning OCL with UML. submitted to TOOLS 2011, OCL Workshop,
2011.

[Wil11b] E. D. Willink. Modeling the OCL Standard Library. submitted to TOOLS 2011,
OCL Workshop, 2011.

[Woo05] E. Woods. OCL Quick Reference. 2005.
http://www.artechra.com/media/writing/OCL1.5-quick-reference.pdf

[WTW10] C. Wilke, M. Thiele, C. Wende. Extending Variability for OCL Interpretation. In
Petriu et al. (eds.), Model Driven Engineering Languages and Systems. Lecture
Notes in Computer Science 6394, pp. 361–375. Springer Berlin / Heidelberg, 2010.

[WTZ10] C. Wende, N. Thieme, S. Zschaler. A Role-based Approach Towards Modular Lan-
guage Engineering. 2nd International Conference on Software Language Engineer-
ing, (SLE 2009), Revised Selected Papers, 2010.

Proc. OCL 2010 18 / 18


